EQUAÇÃO GERAL DE GRACELI. - QUANTIZAÇÃO DE GRACELI.
G ψ = E ψ = E [G+].... .. =
G ψ = E ψ = E [G+ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*] ψ μ / h/c ψ(x, t) x [ t ]..
q G* = energia quântica de Graceli.=
[ E [G+].
q G*] =SISTEMA GRACELI DE:
TENSOR G+ GRACELI = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO, SISTEMA GRACELI DO INFINITO DIMENSIONAL.
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
Equação de Schrödinger Dependente do Tempo (geral) / G ψ = E ψ = E [G+].... .. |
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- , / G ψ = E ψ = E [G+].... ..
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Em física, o efeito Compton, ou espalhamento Compton, é o espalhamento de um fóton por uma partícula carregada, geralmente um elétron, que resulta em uma diminuição da energia (aumento do comprimento de onda) do fóton espalhado, tipicamente na faixa de raios-X ou de raios gama. Como a relação de dispersão para partícula livre exibe dependência com o quadrado de seu momento, E = P²/(2m), ao passo que a relação de dispersão para fótons é linear em relação ao momento, E=PC, a conservação simultânea do momento e da energia é praticamente inviável na interação com partícula livre, onde as referidas leis de conservação implicam a emissão de um segundo fóton a fim de serem satisfeitas.
Em materiais cristalinos um fônon pode tomar parte no processo ao invés de um fóton. Considerando-se o momento cristalino da partícula, a absorção completa do fóton torna-se viável, sendo importante em espectroscopia de fotoelétrons.
Há também o espalhamento Compton inverso, processo onde o fóton ganha energia pela interação com a matéria. A variação total no comprimento de onda, positivo ou negativo, é denominada variação Compton.
O Efeito Compton foi observado por Arthur Holly Compton em 1923, e posteriormente verificado por seu aluno Y. H. Woo nos anos seguintes.[1] Compton ganhou o prêmio Nobel de Física em 1927 pela descoberta.[2]
O efeito é importante por mostrar que a luz não pode ser explicada meramente como um fenômeno ondulatório. O Espalhamento Thomson, a clássica teoria de partículas carregadas espalhadas por uma onda eletromagnética, não poderia explicar uma variação no comprimento de onda. A luz deve agir como se fosse constituída de partículas para explicar o espalhamento de Compton. O experimento de Compton convenceu os físicos de que a luz pode agir como uma corrente de partículas cuja energia é proporcional à frequência.
A interação entre a alta energia dos fótons e elétrons resulta no elétron recebendo parte da energia (fazendo-o recuar), e um fóton contendo a energia restante sendo emitida numa direção diferente da original, sempre conservando o momento e a energia totais do sistema. Se o fóton ainda possui bastante energia, o processo pode ser repetido.
O espalhamento de Compton ocorre em todos os materiais e predominantemente com fótons de média-energia (entre 0.5 e 3.5 MeV). Ele é também observado com fótons de baixa energia; fótons de luz visível ou de frequências mais altas, por exemplo, junto ao efeito Fotoelétrico.
Fórmula da variação de Compton
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz.
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a Equação do Espalhamento de Compton:
- / G ψ = E ψ = E [G+].... ..
onde
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- / G ψ = E ψ = E [G+].... ..
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é 2.43×10-12 m.
Na física a Representação de Heisenberg, desenvolvida pelo físico Werner Heisenberg, é a formulação da mecânica quântica onde os operadores (observáveis) são dependentes do tempo e o estado quântico são independentes do tempo. Isto demonstra o contraste com a Representação de Schrödinger na qual os operadores são constantes e o estado quântico se desenvolve no tempo. Estas duas representações apenas se diferem pela mudança na dependência do tempo. Formalmente falando a Representação de Heisenberg é a formulação da mecânica matricial numa base arbitrária, onde o Hamiltoniano não é necessariamente diagonal.
Detalhes matemáticos
Na Representação de Heisenberg da mecânica quântica o estado quântico, , não se modifica com o tempo, e um observador A satisfaz a equação
- / G ψ = E ψ = E [G+].... ..
onde H é o hamiltoniano e [·,·] é o comutador de A e H. Em certo sentido, a Representação de Heisenberg é mais natural e fundamental que a Representação de Schrödinger, especialmente para a teoria da relatividade geral e restrita.
A similaridade da Representação de Heisenberg com a física clássica é facilmente identificada ao trocar o comutador da equação acima pelos Parênteses de Poisson, então a equação de Heisenberg se tornará uma equação da mecânica hamiltoniana.
Comentários
Postar um comentário